

Introduction

Objective is to quantify slopes of MER sites at highest resolution (5 m baseline) MER Safety criterion: P(slope≥15°) ≤ 1%

- Initial results reported at MER WS 2, 10/2001
 - 4 sites, 1 DEM each (Eos, Isidis, Gusev, Melas)
 - All were rougher than MER criterion
 - Fairly representative apart from Melas (only dunes sampled)
- Update for MER LS WS 3:
 - 12 datasets covering all 6 sites
 - Good consistency with previous results
 - Melas layers even rougher than dunes
 - Athabasca, Hematite smooth, meet criterion

Overview of Methodology

- Rely on MOC-NA images
 - 2x2 summation, ~3 m resolution (some 4x4, ~6 m)
- Stereoanalysis
 - Horizontal resolution ≥3 pixels (10 m)
 - Vertical precision ~2m w/high confidence
- 2D Photoclinometry (shape-from-shading)
 - Horizontal resolution ≥1 pixel
 - Model-dependent; calibrate amplitude to stereo to improve confidence
 - Subject to artifacts due to albedo variations
 - Samples smaller, usually slightly different areas
- Slope analysis based on DEMs produced

Software

- We use commercial photogrammetric workstation (LH Systems SOCET SET) combined with ISIS
- Includes "generic pushbroom scanner" sensor model that can describe MOC
 - Adjustment capability limited
- Wrote software to ingest/setup images
- Also use Kirk's 2D photoclinometry and slope analysis software

Identification of Images

- Automated search of MOC cumindex
 - Searched releases through E12
 - Look for overlaps
 - Require compatible illumination
 - Validate image quality & overlap by inspection
 - Disappointing after our original search
- Manual search
 - Footprint maps on Marsoweb site
 - Compared E12, E13 image pages
 - We welcome suggestions from colleagues
- 23 candidate pairs/triplets found
 - 7 eliminated (hazy, poor o/l, surface changes,...)
 - 10 mapped
- Also used 2 images for photoclinometry only

Stereo Coverage—10/01

Isidis Planitia

E02-01301/E02-02016

Stereo Coverage—Current

Stereo Coverage—Current

Hematite: PC only

Many more images with regions suitable for PC...

Athabasca: 3 + 1 PC only

At least 1 more pair (not shown) found for Athabasca

Characterization of the Sites

AKA "Why Randy is not a geologist..."

Stereo Image Control

- Do least-squares adjustment in SOCET
 - Position/velocity offsets in 3 axes
 - Rotation offset/vel/accn in 3 angles
 - Does NOT handle high-frequency "wiggles"
- Constrain tiepoints to elevations interpolated from MOLA (USGS 500m grid for each site)
- Did not attempt absolute horizontal control
 - Would require ties to MOLA via intermediate resolution images
 - Not necessary for roughnness analysis
 - Horizontal positions OK to few x 100 m

Stereo DEM Collection

- Collect by automatching, edit w/stereo display
- High-frequency s/c pointing oscillations cause serious problems for DEM collection & use
 - Periods 0.1–1 s, amplitudes ≤50 uRad
 - Also seen in SPICE CK but aliased to ≥4 s
 - Cross-track oscillations mimic stereo parallax, cause DEM to undulate (10s of m amplitude)
 - Digitally filter DEMs to suppress undulations
 - Along-track oscillations cause matching image lines to wander in and out of alignment.
 - Stereo matcher "loses lock" and fails
 - Collect in sections, adjusting for offset, then edit together
 - Workarounds more difficult in Relay-16 mode?

Atha 2: M07-05928/E10-02604

Atha 3: M07-00614/E05-00197

Melas 1: E02-00270/E05-01626

Melas 2: M08-04367/E09-02618

Melas 3: M04-00361/E12-00720

Melas 3 Visualized

Gusev 1: E02-00665/E02-01453

Gusev 2: E02-00341/E05-00471

Isidis 1: E02-02016/E02-01301

Eos 1: E02-02855/E04-01275

Eos 2: E04-02155/E11-02980

Photoclinometry "Control"

- Haze reduces contrast; must subtract correct haze to get correct DEM, slopes
- If possible use stereo DEM to get haze
 - Shade DEM with surface photom function
 - Regress image on shaded; intercept=haze
 - Similar aproach w/MOLA works at poles
- Determine haze from shadows (if any)
- Scale contrast of known slopes (dunes)
- Extrapolate atmospheric optical depth

Athabasca PC Areas

Haze Estimation for Hematite

1) Give dunes in E04-01873 same haze-free contrast as Melas dunes

->Haze/Total = 0.6

2) Compare site albedos & optical depths using radiative xfer model.

-> "reasonable" tau=0.4, A~0.14

Effect of Haze Estimates on Hematite RMS Slopes

Hematite 2a "Slope" Maps: Effect of Albedo Variations

"Slope" in down-sun direction

"Slope" in cross-sun direction

Hematite: Areas 2b—c chosen for minimal albedo variation

Statistical Analysis

- Direct calculation of slopes
 - Adirectional (gradient) or bidirectional (e.g., E-W)
 - Gives shape of entire slope distribution
 - Distributions at all sites are similar and long-tailed: extreme slopes are more common than RMS suggests
 - Limited to single horizontal baseline at a time
- Fourier transform techniques
 - Limited to bidirectional slope
 - Gives RMS slope only, not distribution
 - Quickly gives variation with baseline
 - How do results compare w/other datasets?
 - Are slope-producing features adequately resolved?

Slope Map Example: Gusev 2a Stereo

Slope Map Example: Gusev 2c Photoclinometry

Preferred Slope Estimates

- Prefer stereo when
 - Samples larger, more represantative area
 - PC is compromised by albedo variations
- Prefer PC when
 - Albedo variations not dominant
 - Stereo fails to resolve relief elements
 - Stereo matching/editing errors severe

Slope vs. Baseline 1 Gusev: Highly consistent

Stereo partly resolves main roughness elements

Photoclinometry resolves these features better

Long-base slope estimates are compatible, so photoclinometry results preferred

Smooth crater floor is atypical, remainder are similar

Slope vs. Baseline 2 Melas: Stereo lacks resolution

Stereo fails to resolve dunes

Photoclinometry resolves dunes, gives best slope estimates

Stereo appears to resolve layer topography—fortunate, since PC is impossible because of albedo

Slope vs. Baseline 3 Isidis: PC affected by albedo

Stereo, photoclinometry both resolve roughness elements

Photoclinometry slopes slightly higher (albedorelated artifacts, sampling effect)

Stereo results preferred

Slope vs. Baseline 4 Hematite: PC affected by albedo

No stereo

Photoclinometry (areas b,c) resolves features

Albedo variations in area a are reflected in baseline dependence as well as apparent greater slopes

Slope vs. Baseline 5 Eos: Sampling effect on PC

Stereo resolves main roughness elements

Photoclinometry confirms no un-resolved features

Photoclinometry slopes vary, depending on area sampled (amount of hills)

Stereo results preferred

Slope vs. Baseline 6 Athabasca: Complicated

Stereo resolves main roughness elements

Photoclinometry confirms no un-resolved features

Slopes vary with location

Note high PC slopes at long baselines (rolling topography or albedo varying?)

Stereo results preferred

Results

Zi te	T-+	Sub Area	CEM TOPI	Baseline (Pi)	Zjobe (_) SMZ Biqia	Zlope (*)	99% Adır Slope (*)	Correction to 5 pt Base	99% Adır Zione# 5 pı	P(Adm2.151) • 5 pt (%)	Romants
Athabasca	341	7102	PC	5.87	1.26	1./2	3.02	1,020	5.12		NE of ellipse but similar
Augusta	'	ь	PC	3.87	0.94	1.48	3.//	1,020	3.12	0.001	
			PC	5.87	1.25	1.86	4.85	1,019	4.99	0.001	
Athabasca	,	_	21	10	3.39	4.72	15.67	1.125	17.64		S of ellipse, higher standing
Athabasca	-	n	21	20	2.48	3.45	10.20	1.409	11.64	0.004	s or empset righer standing
~~~~		·	PC	5.87	2.99	5.33	13./9	<b>4</b> € 67	13.88	0.004	
	9			<b>3</b> /					Se		
Eos 🖣									3 .5 6		lavie i
		nd	PC	7	5.82	1.01	23.50	0.92/	22.95		PC area misses hills
Eos	z	2	21	10	6.05	191	25.26	1.189	20.02	0,087	1 6 81 7 8 7 8 8 7 8 1 8 1
	-		PC	2.87	8.10	9.61	28.20	1.003	28.33	a 8:	
					10 58	13.82			St. 6.7	0 55	PC n A n ted by hills
Gusev	1	V	G		: 10	4.93			JIG,		Spoot of small crater
		-	21	10	5.63	8.20	24.95	1.066	26.61	0.078	Knobby S of small crater
		ď	PC	2	4.20	5.23	15.31	0.982	15.03	0.010	
ل اا	4_	- 6	P	2	9.35	11.67	22,30	0.990	11.91		nobby 2 of small crater
Gusev	7		2		8. 2	11.50	47-50		21 28	1 A	u w a n is . Sin to 1c/e
	LC		2 2	16		16.	48.	49	50.5		
		c	PC	3	9.00	11.65	30.80	0.989	30.45	<b>u</b> .166	
		d	PC	2	12.23	15.92	42.99	0.985	52.36	0.299	
Hematite	Z		PC	2.9	4.89	9.45	24.38	0./91	19.29	0.037	Albedo variations , not slopes
		ь	PC	2.9	1.25	1.82	4.94	0.946	4.68	0.001	Bland area , typical
		c	PC	2.9	2.21	3.38	9.46	0.933	8.83	0.001	Exposed rougher area
Isidis	1	nb	21	10	4.66	6.39	25.60	1.202	30.78	0.037	
		nc	PC	2	5.70	7.45	22.32	0.983	21.93	0.027	
		sa	21	10	4.12	5.80	20.08	1.058	21.24	0.027	
		sb	PC	2	8.49	10.78	31.18	0.987	30.78	0.121	
Melas	1	2	21	10	2./2	4.86	14.54	1,000	14.34	0.008	Does not resolve dunes
		ь	21	10	1.56	2.66	7.74	1,000	7.74	0.001	
		c	21	10	2.43	4.11	12.61	1,000	12.61	0.004	4
		٠	PC	2	13.19	15.85	41.37	0.923	38.17		Dunes resolvedi
Melas	Z	-	21	10	9.96	12.89	43.42	1.187	51.52		Layers
Melas	3	2	21	10	11.37	14.37	53.80	1.273	68.49	0.274	•
1-1-1-2		_			111.21	14.21	33.83	1.2.2	88.42	3.214	

# Digestible (?) Results



